

Introduction to geodynamic modelling

Solving equations

David Whipp and Lars Kaislaniemi Department of Geosciences and Geography, Univ. Helsinki

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

• Give a quick overview of what we need to know to **solve** equations

 Provide a bit of background for why we need to use numerical solutions to equations

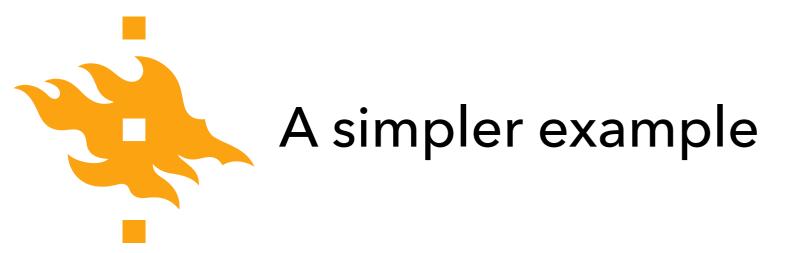
Finding a solution

We have now seen the general form of several different equations we will be using to model geodynamic processes, such as the heat transfer equation below

$$\rho c_P \left(\frac{\partial T}{\partial t} + \boldsymbol{V} \cdot \nabla T \right) = \nabla \cdot k \nabla T + A$$

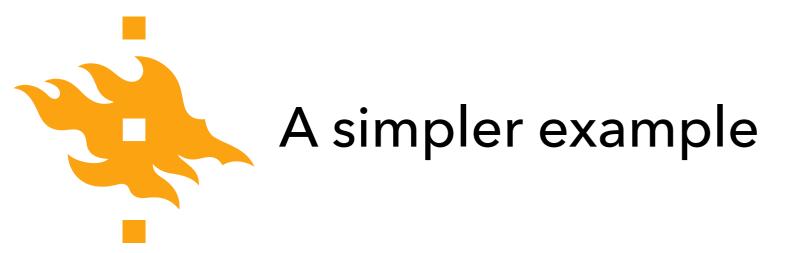
But how do we go from this form of the equation to a solution in the form

$$T(x, y, z, t) = ...?$$



• Let's start simpler

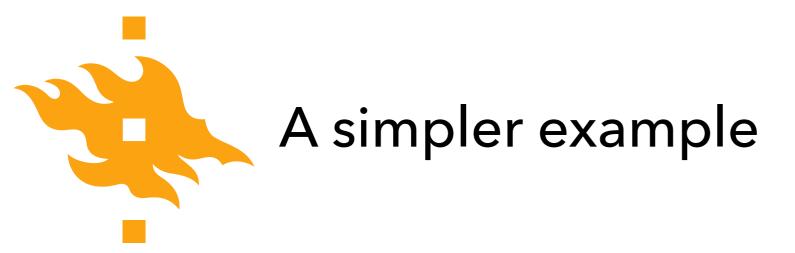
• Steady-state heat conduction in ID



- Let's start simpler
 - Steady-state heat conduction in ID

$$\rho c_P \left(\frac{\partial T}{\partial t} + v_z \frac{\partial T}{\partial z} \right) = \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + A$$

$$\int \int k \frac{\partial T}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + A$$
Fine dependence Advection Conduction Production



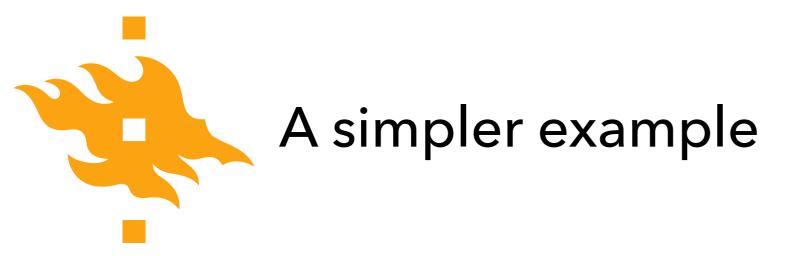
- Let's start simpler
 - Steady-state heat conduction in ID

$$\rho c_P \left(\frac{\partial T}{\partial t} + v_z \frac{\partial T}{\partial z} \right) = \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + A$$

$$\swarrow$$
Time dependence Advection Conduction Production

 In this case we can ignore most terms of this equation as we're left with

$$\frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) = 0$$



• In fact, we can even factor out k and simplify our equation further

$$\frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) = 0$$
$$\frac{\partial}{\partial z} \left(\frac{\partial T}{\partial z} \right) = 0$$
$$\frac{\partial^2 T}{\partial z^2} = 0$$

- Here, we are left with simply the second derivative of temperature T with respect to depth z
- We can solve this, we just need to integrate twice with respect to z

A simpler example...?

• We can integrate once to find

$$\int \frac{d^2 T}{dz^2} dz = \frac{dT}{dz} + c_1$$
$$\frac{dT}{dz} + c_1 = 0$$

• And a second time to get

$$\int \left(\frac{dT}{dz} + c_1\right) dz = \int \frac{dT}{dz} dz + \int c_1 dz$$
$$= T(z) + c_1 z + c_2$$
$$T(z) + c_1 z + c_2 = 0$$
$$T(z) = -c_1 z - c_2$$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

$$T(z) = -c_1 z - c_2$$

- Great, we have our solution, but we can't yet calculate temperatures because we don't know the values of c1 and c2, the constants of integration
 - What do we need to find c_1 and c_2 ?

- With two integrations we end up with two unknown constants
- In order to find the values of the constants, we need to use boundary conditions, known (or assumed) values for certain variables in our equation
- There are two natural choices for our heat transfer problem:
 - Known temperatures and certain depths
 - Known temperature gradients at certain depths

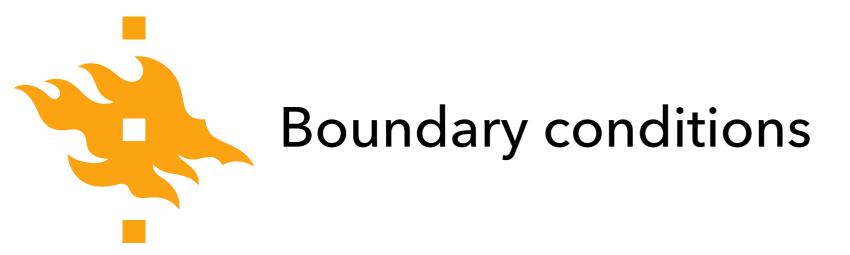
Boundary conditions

$$T(z) = -c_1 z - c_2$$

Let's make some assumptions

- We know the surface temperature at z = 0 is T = 0
- We know the temperature at some depth z = L is $T = 1000^{\circ}C$

- If we substitute in assumption I, we find $c_2 = 0$
- If we then substitute in assumption 2, we find $c_1 = -1000 / L$



• Now, we can finally see out exciting result with $c_1 = -1000 / L$ and $c_2 = 0...$

$$T(z) = -c_1 z - c_2$$
$$T(z) = \frac{1000}{L} z$$

a straight line.

- So that was an almost embarrassingly simple example
 - Heat conducted between two known temperatures at steady state will simply produce a linear temperature increase with depth
- What happens, though, if we consider a non-steady state example?
 - What other information might we need to know for that case?

Time-dependent advection and conduction t i +u t_0 ′+z

Fig. 3.13, Stüwe, 2007

In order to consider the time evolution of the temperatures in the Earth, we would also need to know the starting distribution of temperature

• This is known as an **initial condition**

- Clearly, the temperatures we expect after some time can strongly depend on the initial conditions we assume
 - Why don't we need initial conditions for the steadystate case?

What about other scenarios

- What if we want to solve slightly more complicated problems?
 - 2D heat transfer with surface topography
 - Spatially variable material properties
 - Temperature-dependent material properties

What about other scenarios

- What if we want to solve slightly more complicated problems?
 - 2D heat transfer with surface topography
 - Spatially variable material properties
 - Temperature-dependent material properties
- In most of these cases we cannot simply directly integrate our heat transfer equation because we cannot find the constants of integration
 - Consider the example above with topography
 - We likely do not have a function that can give us the required known values of temperature and elevation at the surface

The need for numerical integration

 In cases where the geometry of the problem or material property distributions/behaviors are more complex, we need to use numerical methods to integrate our equations of interest

- Much days 2 and 3 in this course will focus on the use of the finite difference method of solving equations, how it can be used, and its limitations
- The finite difference method is one of two popular approaches used for solving equations in geodynamic models
 - We'll start learning the details of the finite difference method tomorrow morning

- To solve equations used in geodynamic modelling (or anything really) we need to know
 - Boundary conditions
 - Initial conditions (in some cases)

• We can solve these equations directly in some cases, but most of the time we will need to use numerical methods such as the **finite difference method** to find solutions

Stüwe, K. (2007). Geodynamics of the lithosphere: an introduction. Springer Science & Business Media.